THE GEOMETRY OF COHESIVE MAGNET-COIL WINDING

L5-130
J. M. Cook

September 1988

Surmmary - During the winding of a magnet-coil, the wire is pulled tizhtly

across the surface of the inner part that has already been wound. If the

-wire is not a geodesic in the surface, it will tend to slip laterally. Classical ..

differential geometry is applie(i to the problem of winding the coil so as to

minimize this tendency, subject to the constraint that a prescribed mag-

netic field be produced.

T(z)
N(z)
B(z)

7(z)

6(z)
J(z)

"NOTATION

subset of euclidean space
point (z,.z5.2s) in D

curve in D

arc-length parameterization of 7
tangent tor at x

principal normal tor at z
binormal tor at x

torsionof r at =

curvature of r

Darboux vectorofr at x
current density (vector) at =

layering function (scalar) on D



D/ R

L/ R

81,82

Go

Uy,Uz

Fufz

3]

5o

-2

optimal layering function on D
windability of a current distribution - |
windability in a given layering
equivalence relationon D

quotient manifold of D by K

gquotient of L by &

quotient mapping from D to D/ R
adjoint (of a linear transformation)
real-valued functions of x

linear differential form on D/ R
optimal linear differential form on D/ R
linear differential form on D

local coordinatesin U/ K

real-valued functions of u; and u;

angle

angle

inner radius of annulus

outer radius of annulus

height of annulus

constant

strip of geodesics containing 7
parameterization of strips parallel to S, g
strips parallel to S;p

half-width of strip S, ¢

linear space of current distributions
linear space of magnetic fields

length of vector v



- inner product

v 8 38" @
621 ! 6232 ' 62.'3

INTRODUCTION

The oldest branch of differential geometry is its theory of curves and sur-
faces in euclidean space. It deals with concrete objects immediately accessible
to our naive spatial intuition. It is a beautiful theory to contemplate, but it was
also meant by its creators to be applied to real problems. The purpose of this

paper is to apply it to the mechanics of magnet-coil winding.

A curve in a surface is a geodesic if and only if it connects any two of its
points (not too far apart) by an arc that is sherter than any other arc in the sur-
face connecting those two points. If the surface is a plane, then its geodesics are
straight lines. If the surface is a sphere, the geodesics are great circles. In gen-
eral (Brand [1]), "If a weightless flexible cord is stretched over a smooth surface
between two of its points, its tension is constant and the line of contact is a éeo—
desic”. If one tries to wind a "weightless flexible cord” along a curve that is not
geodesic, the cord will tend to slip to become a geodesic. In the process, it may

glip entirely off of the supporting surface.

This obvious fact will be enlarged into a mathematical model of a magnet
coil that, though highly idealized, does predict the lateral forces on the wire dur-
ing coil fabrication that arise from these purely geometric considerations. A
coll is wound in layers with the wire in each layer pulled tightly against the layer
beneath it. A layer is idealized as a smooth surface and a wire as a curve in the
surface. Then the extent that it deviates from a geodesic, and the associated
tendency towards lateral slippage, can be computed by classical formulae. In

this idealization the wire has no thickness so the .model does not include the
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support it gets from the one of i1ts two neighbors that has already been wound in
the layer. However, layers are usually wound alternétely from one sice to the
other so the support on cne side that may have been crucial in the prevention of
slippage in one layer will be absent in the next, and the lateral forces predicted
by the theory should still be taken into account. In any case, the slippage ten-

dency of the layer as a whole is modeled.

Not modeled at all are the forces that the magnetic field will produce later
when the coil is energized. There is no fleld to contend with while the coil is

being wound.

A solenoid can be modeled by helices wrapped on concentric cylindrical
surfaces. They are geodesics so the kinds of forces we are concerned with are
perpendicular to the surfaces and there is no slippage problemn. On the other
hand there are important coil shapes, for example saddle coils used in magne-
tohydrodynamic power generation (dipole) and accelerator beam steering (qua-
drupole), where the slippage problem can be so serious as to cause disassembly
of the coil during fabrication. The precipitating circumstance of this paper was
the threat of just such an occurrence, called to my attention by R.P.Smith. at

the Superconducting Magnet Group in Argonne National Laboratory.

A measure of the problem is the size of the coefficient of friction needed to
prevent lateral slippage. The coefficient is the tangent of the "angle of friction.”
The complement of this angle must be less than the angle between the surface
and the osculating plane to the curve at that point. -(If as three non-collinear
points on a smooth curve approach a limit point the plane they determine
approaches a unique limiting plane, that plane is called the osculating plane to
the curve at the limit point. The curve is a geodesic in a smooth surface if and
only if the osculating plane, at every point on the curve where it exists, is per-

" pendicular to the surface at that point. The force exerted by the wire on the
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surface is in the direction of the principal normal to the curve, a veclor in the
osculating plane that is~perpendicular to the curve.' This can be seen from a
parallelogram of forces determined by the three points as they approach their
limit.)

So far we have assumed that the layering of the coil was fixed. But a layer-
ing is not determined by the current distribution the coil is designed to carry.
For example, early in the winding of a solencid one end of the coil could be
disproportionally built up so that the layers were concentric cones. Circles are
not geodesic on right circular cones so the wires would tend to slip down towards

their vertices.

An optimal layering of a current distribution will be defined as one for
which the needed coefficient of friction is minimal. The windzbilify of a current
distribution will be defined as the reciprocal of the smallest coefiicient of fric-
tion that would keep the wire from slippinz laterally in an optimal layering.
Thus the windability of a solenoidal current distribution is infinite because in an

optimal layering (concentric cylinders) no frictional forces are needed (ideally).

There are other distributions for which no such layering can be found. If
the scolenoid is skewed by an affine transformation, there is no way the wire can
be wound as a geodesic. The windability for skewed sclenoids will be computed
and shown to be finite. This artificial example is used to illustrate the theory
because of its mathematical sirnplicity. Saddle coils have an inconveniently low
windability but the computation is not as simple.

A procedure is described for finding optimal layerings.

Fipally, it is shown that any current distribution can be approximated arbi-
trarily closely by another whose windability is as large as desired. The price
paid for the high windability of the approximating distribution may, however, be

an infeasibly complicated supporting structure,
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DEFINITION OF WINDABILITY

All the mathematicsthat we will need was already familiar to the nineteenth
century geometers. It is almost entirely contained in chapters Il and VIII of
Brand [1], which is a very good introduction to undergraduate vector and tensor
analysis. The remainder consists of a few results from the more-specialized
Weatherburn [2].

The current distribution is defined by a real vector field J{z), nonzero for
gllz = (z,,z52g) in some bounded domain D, an open subset of euclidean space.
The wire at z is required only to be parallel to J{z), so we can replace J by the

normalized vector field
T(z)=J(z)/ |J(z)|.

A loyering of T (and J) is defined by a real-valued function L(z) such that
VL is nonzero and perpendicular to T{(z) for all z in D. The layers will be the
level-surfaces L =c¢ of L. |

L and T are assumed to have continuous first derivatives but, like the
nineteenth century geometers, we will not explicitly state all continuity condi-
tions. Also, we will use their phrase "in general” te aveid analysis of singular

situations; and we will use integrability only as a local concept.
The wires can be represented by solutions of the differential equation

&ls) o rir(s)). (1)

ds
L is an integral of the equation. L(r(s)) is constant for all s (and a fixed solu-
tion curve ). s measures arc length along . T{z) is the unit tangent vector to
r at r(z).
In the solenocidal example above, with the helical wiring approximated by

circles (degenerate helices), D can be taken as the annulus
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OD<a <Vzi+x7 <b,
0<Is<h

with

T(z) = (—x5,2,,0) / VzZ+zZ.

The solutions of (1) will be circles with centers on the axis of the cylinder,

so the function

L(I) =Nzyr+zx3

will be a layering of T. The stress exerted on the underlying layer by the

corresponding wire will be directed radially inwards.

For the tangent field T corresponding to an arbitrary current distribution,

that force will be directed along the principal normal N to the curve, defined by

Nr(s) = LEEN /o)

where £ is a non-singular scalar called the curvature of r at r(s). By the
definition of integrability of a vector field, an L will exist everywhere perpendic-
ular to this force if and only if &V is integrable. By the classical theorem, this is
true only if N-curlN = 0. ( The converse would involve non-local considerations

that have been explicitly excluded from this paper.)

The component of curlN in the N-direction at z is

((B(z)MN(z)) T(z) - ((T(z)-V)N(z)) B(z). (=)



V(N (z) T(z)) = (VN(z)) T(z)+N(z)(VT(z)) = 0
and the first term of (2) is equal to
={(B(z)V)T(z)) N(z).
By the second Frenet formula, the second term in (2) is equal to
~(—e{z)T(z)+7(z)B(z)) B(z) = —7(z)B(z) B(z) = —7{(z)

where 7(z) is the torsion at z = 7(s) of the curve r through z.

Therefore

(B(z)V)T(z)) N(z) + (z) =0 - (3)

is equivalent to N-curlN = 0. However (3) is easier to use in computing the win-
dability of T. (The expression on the left of (3) has an intuitive geometrical
meaning. Associated with every curve is a strip called the rec.tifying strip. It
contains the curve and also contains F(z) in its tangent space. It is contained
in the envelope of the s-parameterized fa.rrﬁ.ly of planes, the rectifying planes,
each of which contains r{(s) and, as tangents, B(z) and T(z). This strip is deter-
mined b&’ r alone, independently of the family of curves in which it is imbedded.
But that family also determines a strip containing r, made up of those curves in
the family that are tangent to the rectifying strip "along"” B(r(s)) "at"” r{s). The
expression in (3) measures the rate of deviation of that strip from the rectifying

strip at that point. When it is zero the two strips coincide. Then N is integrable
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and its integral surfaces can be constructed by puttin ether the rectifying

©oog

strips.) S
We first define a quantity w(7,L) that measures the windability of T in a

given layering L:
w(T,L) = max; ¢ p cof |angle (N(z),VL(z)}|.

Then define the windability ¥ by

W(T) = ming w(T.L). ()

The tangent of angle(N{z),VL{(z)) is the smallest coefficient of fricticn
between layers that would keep the wire at z from slipping laterally. Therefore,
¥ (T) is the reciprocal of the smallest coefficient of friction needed to keep the
wire from slipping in an optimal layering -- optimal in the sense that there exists
no layering of T in which an even smaller coeflicient of friction would hold the
coil together during winding.

L defines an optimal layering if the maximum of the angle between its gra-
dient and N is as small as possible. To construct such an L, we first construct
each layer by putting together strips along each curve r (solution of (1)) in the
layer. Each strip is oriented so that the maximum along r of the angle between

its normal and the principal normal to r is minimal.

To carry out this construction, define two points in D to be equivalent with
respect to the relation R if and only if they are both on the same curve r. Define
D/ R to be the two-dimensional manifold whose "points” are the curves r. In the
terminology of [2], section 103, D/ R is a curvilinear congruence. In modern ter-
minology it is the quotient manifold of D by K. (There may be no cross-section

of the family of curves that would allow us to identify points of D/ R with points
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in a two-dimensional submanifold of D.) Any layering function L :
each 7 (in the terminology of [2], section 104, it is a ”s.urface of the
congruence'), so it is compatible with the relation R and defines a function L/ R
on D/ R. There is a one-to-one correspondence between layers (surfaces) in D
and curves in D/ F. The set of all curves in D/ R tangent at a given point =
(layers in D tangent along a given curve r) determines a direction at = (strip

along ). We want to vary that direction until the corresponding strip is optimal.

A convenient way to formalize the argument is provided by the notation of
differential forms. Let g be a linear differential form on D/ F. (In a subset of
D/ R whére ©; and 43 can serve as coordinates, there will exist functions
Filu,us) and  fo(u,up) such that the form can be written
g = fi{uuz)du,+faluuz)dus) Let @ be the quotient mapping from D to
D/ K. Then g defines a linear form {d@) * g on D that can be written G(z)-d= for
some vector G(z) perpendicular to that curve r in the congruence such that
z = r(z). (No metric has been defined on D/ R, so there is no invariant connec-
tion between forms g and vectors (f,.f2).) Because N(z) and FB(z) span the

space of vectors perpendicular to r at r(s),
G(z) = ey(z)N(z) + ex(z)B(z)

for some scalar functions e;. Define @y(z) = angle (G(z),N(z)). and then define

go as the form g such that at eachr in D/ R,

maxg |Og (r(s)}|

is minimal, But all linear differential forms on two-dimensional manifolds are

integrable (locally}. In general they are multiples, by an integrating factor, of
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the differential of a function. And every function on D/ K is of the form L/ 7 [og
some layering function L.on D. Let Ly be that function on D which corresponds

to gg. Then Lg determines an optimal layering of T

W(T) =w(T.Lg).

To illustrate this procedure, we apply it to the skewed solenoid. It is

obtained from the solenoid by the affine transformation
(z1, z2, Z3) = (z1+cz3, T2 Tg)

Each circle 7 is transformed into another circle in the same plane, and

N(z) = (cz3=2 1, ~24.0) / V(o292 P ¥ 23

is still the unit vector pointing towards the center of that (new) circle.

T(z) = (—zo z1~c23, 0) / V(czg—z ) + 28

is obtained by rotating it through a right angle. N is integrable if and only if (3)
is satisfied. But 7 = O for any family of circleé; and B(z) = (0,0,1), and in apply-
ing the product rule for differentiation to 7 the term containing the derivative
of the denominator with respect to BF{z) = d/ dxrs can be ignored because the

numerator is perpendicular to N(x). Therefore, (3) becomes

{E:—s("zz. z;—Ccxs, O)]'(C-"-’s—xn ~z2,0) / ({czg—z, ) + z§) =0
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and
“exry/ {(cxg—z,)? + z8) = 0.

Thus there is no way to wind a skewed (nonzero ¢) solenoid such that the wire is
a geodesic in each layer.

The best that can be done in this case is a layering Lo that minimizes the

maximum over D of angle (VL,N). By the symmmetry of T, we need look only at
max, angle ((gradl)(r(s)), N(r(s)))

for any one solution r of (1). It can be taken as the circle in the =z = 0 plane with
radius a and center at (0,0,0), parameterized such that r{0)={a,0,0).

In this case there does exist a cross-section of the curvilinear congruence
that can be identified with D/ &, narmmely, the parallelogram in the z, = 0 plane
defined by 0<zg<h and a+cxrg< z,<b+czxs (the intersection of D with the
positive quadrant in the z, = 0 plane). Let u; = z, and u, = z3. Define the value
of the linear differential form g at (a,0) by F,(2.0) = cos a and f,{z,0) = sin a.
Then @, (r(s)) could be cobtained by integrating along = the expression we have
obtained for N-curllN; but it is a monotonic function of s between 0 and 7z, so
its absolute value attains its maximum at one of these two pointsr That absolute

value is minimal when a = —arcfon ¢, so
W(T)=w(T.L)=1/c
and Lg can be taken as the transform of \/.'1:12 -M:a2 . The layers that were right

circular cylinders are transformed into cylinders with elliptical cross-sections.

OPTIMIZATION OF THE WINDABILITY

The coefficient of friction may be too low to hold. the coil together during
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winding even in an optimal layering. One would like to be able to increase the
windability, necessarily by altering the distribution; without unduly distorting

the magnetic field in the region of interest.

It is clear that a single isolated wire can always be supported in place: a
curve r can always be imbedded in a narrow strip perpendicular at each r{s) to
N(r(s)). Then r is a geodesic in that surface. So the windability of an isolated
current filamment is always infinite, no matter how convoluted it may be. But this
does not take care of current distributions defined on sets with non-empty inte-
rior. For them we want to put the strips together to form layers. As a first step
in that direction, we would like the strip to support a layer of parallel wires, i.e.,
a one-parameter family of parallel geodesics. Fortunately, a great deal is known

about such surfaces. By the theorem on page 25, volume I of [2],

“If a family of curves are both geodesics and parallels on a surface, the sur-

face is developable.”

A surface is developable if and only if it is the envelope of a one-parameter
family of.planes. Then it will have the useful properties that it is swept out bsr its
only family of rulings and that it can be unrolled out flat onto a plane without
distortion. Its intrinsic geometry is that of a plane. All developable surfaces are
(extrinsically) either planes, cylinders, cones or else they are the surface swept

out by the tangents to some twisted curve in space, its edge of regression.

Associated with every curve are several developables other than its tangent
surface. One of them is its "rectifying developable”, containing the rectifying
strip described after equation (3). It is the envelope, as s varies, of the rectify-
ing plane, orthogonal to N{r(s)) at r(s). r is geodesic in its rectifying developa-
ble; hence it can be viewed as a straight line in a plane, the plane with which the
rectifying developable is i{sometric, and can be imbedded in a one-parameter

family of straight lines in that plane, i.e., of geodesics in its rectifying
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developable. Let S, ¢ be this strip of gecdesics. of width 2¢ with v the conter-line.

In the next layer wound lengthwise on top of this strip, the wires will natur-
ally tend to align themselves with the wires below, even though this may cause
them to deviate sightly from geodesicity in their own layer. For a mathematical
model of such a multi-layered strip, imbed S, s in a one-parameter family Sy,
—£< A <g of parallel surfaces of width 2z by the following construction: Using Sr g
as the "director surface’ ([2], page 183). construct the two-parameter family of
straight lines (rectilinear congruence) normal to S, g (a "normal system" in the
terminology of [1], section 141). Define L(z) = A if and only if the signed dis-
tance of z from S, equals A. This distance will necessarily be measured along
the straight line of the congruence throuzh z. It is assumed that z is small
enough to exclude singular peints in the congruence. The level surfaces L = A
define the one-parameter family of parallel surfaces. Those lines in the
congruence that intersect a given geodesic in S form a one-parameter sub-
fammily that intersects S, , in a curve, thus setting up a one-to-one correspon-

dence between the family of geodesics in S; g and a family of curves in Sy ;.

Define the domain D, as the union of the sets S, , for —e < A < &, and define
T,, N.. and B, in D. as the tangent, normal, and binormal fields of the two-
parameter family of curves. Let 7y be one of the geodesics in the defining family

of S; 3. Then the corresponding curve in S, is given by
7a(5) = 7ols) + ANy (ro(s))
because N, (r(s)) is perpendicular to S, 4 (by'the geodesicity of 7y ); and

dr,(s)
ds

dNr(TO(S)) 3

= Tp(ro(s)) + A ds
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But

if‘%ﬁz —ko(s) T7 (To{s)) + 7o(s) Br(To(s))

by the second Frenet formula. Therefore

d’?‘A(S)

35— (1-Aeg(s ) Tr(7a(s)) + A7o(s) Br (7 ofs)).

As the presence of the second term on the right hand side of this formula shows,
7, need not be a geodesic in S, ,. That family need not even consist of parallel
curves, though this latter is a higher order effect.

By normalizing and differentiating this expression for dry(s)/ ds, the princi-
pal normal N,(r\(s)) at 7a{s) can be found, and then the angle betweesn it and
N, (ro(s)) which is also normal to Sy, at 7x(s). Then w(7T, L) and #(7T;) can be
found. The angle is a continuous function of A that goes to zero with £, so by a

compactness argument it can be shown that

lim, . oW (7T} = =, ' (5)

The construction of Sy is greatly facilitated by the developability of Sy g. Coor-
dinatize the strip Sy by developing it out flat in the plane as a rectangle and
defining the s-axis parallel to the long dimension and .at a distance & from either
long edge. Then take for the second set of coordinate lines the one-parameter
family of straight lines crossing the s-axis at an angle whose tangent is
k{s)/ 1(s), where «(s) and 7{s) are the curvature and torsion of the given curve

r at r(s). This is the angle at which the Darboux vector intersects . Define the
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coordinates of a point in the flattened strip as s and s;, where s, is the sizgned

distance of the point from the s-axis as measured in the direction

-

arctan (k(s)/ 7(s)). If ¢ is small enough, the coordinates will be unique. Now
define an isometry of the flattened strip into D, by mapping the point with coor-
dinates (s,s;) in the strip into the point 7(s) + s,6(s)/ |8(s)| in D., where 6{s)
is the Darboux vector. This is the mapping that identifies the straight lines
parallel to the s-axis in the flattened strip with the defining family of geodesics

in S; 5. The Darboux vector at s lies along the ruling of S, ¢ at s.

The mapping can be extended, though it need no longer be an isometry off
of S;p. to a mapping of a rectangular parallelepiped with square cross-section,
2e on each side, and with the flat s,s;-strip as its midplane, by mapping the
point (s.s;.A) in the rectangular parallelepiped into the point
7(s) + s,6(s)/ |6(s)| + AN(s) in D. Then the straight lines parallel to the s-axis
in the rectangular parallelepiped correspond to the bundle of wires in D.. The
rulings in S, , consist of those points closest to the rulings in S, 4, because the
enveloping planes of parallel developable surfaces correspond and are constant
along a ruling.

In many schemes for .the nurmerical computation of magnetic fields, the
continuous current distribution J is, in effect, approximated by éz finite number
of one-dimensional, discrete current elements. For example, if the relationship
between current distribution and magnetic ﬁéld is linear and implemented by an
integral transform, the Riemann surn approximating to the integral can be

taken over such current elements, suitably weighted.

Although it may or may not be numerically convenient, the current ele-
ments can be joined together to form a finite number of current filaments along
the curves 7,73, - * - .7y, approximating J to any desired degree of accuracy in

the sense of numerical convergence of the magnetic field calculation.
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The current fllament along the curve r; can be approximated to an arbi-
trary degree of accuracy as far as the magnetic field in the region of interest is
concerned (necessarily in a region bounded away from that of the coil) by a con-
tinuous current distribution J; in some domain D, . union of the sets S, ) over
—& < A < g, as described above. Further, if all the ¢ are small enough, ¥ (J;) can
be made larger than any preassigned constant by (5), and hence so can
W(Z;J;) = min; W(J;). By making these remarks mathematically rigorous, one

can prove the main theorem of this paper:

Fuvery curreni distribution can be opproxrimated arbitrarily closely by o

current distribution of arbitrarily high windability.

To carry out such a proof one could define linear spaces C of current distri-
butions and M of magnetic flelds, and a weak topology on #/ induced by test
functions with support in the region where the magnetic field is of interest.
Define a topology on C as the weakest in which the transformation from C to M4
is continuous, and show that the set of all / in C such that #(J) > ¢ is dense in
C for any constant ¢. Modern functional analysis provides us with several kinds
of locally convex linear topolegical spaces for which such a proof could be dev-
ised, but it would not convey any useful insights. The heart of the proof is con-
tained in the intuitive argument given above.

In fact, the construction of the approximating distributions Z;J; is essen-
tially just that already used on the shop floor of maghet-winding facilities. Even
difficult coil configurations are put together from a relatively small nummber of
domains J,,, each of which is wound in layers of parallel wires built up until dévi-
ation from geodesicity endangers its cohesiveness. The cross-sections of the Iy,
are usually trapezoidal or wedge-shaped (rather than square) se as to fit roughly

together.
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COV.PUTER AIDED DESIGN AND MANUFACTURE

The real purpose of this paper is to argue that the whohle design and
manufacture process'fb}*magnetic coils, from the magnetic field calculation to
the running of the numerically controlled milling machine that shapes the sup-
ports, can be aided by a unified system of computer programs. Both ends of this
process have already been computerized. Programs are available and heavily
relied upon for field calculations; and the milling machine is, of course, con-
trolled by a program. Classical differential geometry can be used to help bridze
part of the gap between these two ends by putting a mathematical foundation
under the art of magnet winding. The present cut-and-try procedure of experi-
menting with epoxy or aluminum models before committing to the more expen-
sive steel supports, can be replaced by experimentation with mathematical
models. Experience and intuition cannot be replaced, but software is a cheaper

and more flexible material for them to work on than hardware.
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